Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 257(Pt 2): 128817, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103663

RESUMO

A novel smart biochromic textile sensor was developed by immobilizing anthocyanin extract into electrospun cellulose acetate nanofibers to detect bacteria for numerous potential uses, such as healthcare monitoring. Red-cabbage was employed to extract anthocyanin, which was then applied to cellulose acetate nanofibers treated with potassium aluminum sulfate as a mordant. Thus, nanoparticles (NPs) of mordant/anthocyanin (65-115 nm) were generated in situ on the surface of cellulose acetate nanofibrous film. The pH of a growing bacterial culture medium is known to change when bacteria multiply. The absorbance spectra revealed a bluish shift from 595 nm (purple) to 448 nm (green) during the growth of Gram-negative bacteria (E. coli) owing to the discharge of total volatile basic amines as secretion metabolites. On the other hand, the absorption spectra of a growing bacterial culture containing Gram-positive bacteria (L. acidophilus) showed a blue shift from 595 nm (purplish) to 478 nm (pink) as a result of releasing lactic acid as a secretion metabolite. Both absorbance spectra and CIE Lab parameters were used to determine the color shifts. Various analytical techniques were utilized to study the morphology of the anthocyanin-encapsulated electrospun cellulose nanofibers. The cytotoxic effects of the colored cellulose acetate nanofibers were tested.


Assuntos
Nanofibras , Antocianinas/farmacologia , Escherichia coli , Colorimetria , Celulose , Lactobacillus acidophilus
2.
Viruses ; 14(12)2022 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-36560763

RESUMO

The inadequate therapeutic opportunities associated with carbapenem-resistant Pseudomonas aeruginosa (CRPA) clinical isolates impose a search for innovative strategies. Therefore, our study aimed to characterize and evaluate two locally isolated phages formulated in a hydrogel, both in vitro and in vivo, against CRPA clinical isolates. The two phages were characterized by genomic, microscopic, phenotypic characterization, genomic analysis, in vitro and in vivo analysis in a Pseudomonas aeruginosa-infected skin thermal injury rat model. The two siphoviruses belong to class Caudovirectes and were named vB_Pae_SMP1 and vB_Pae_SMP5. Each phage had an icosahedral head of 60 ± 5 nm and a flexible, non-contractile tail of 170 ± 5 nm long, while vB_Pae_SMP5 had an additional base plate containing a 35 nm fiber observed at the end of the tail. The hydrogel was prepared by mixing 5% w/v carboxymethylcellulose (CMC) into the CRPA propagated phage lysate containing phage titer 108 PFU/mL, pH of 7.7, and a spreadability coefficient of 25. The groups were treated with either Phage vB_Pae_SMP1, vB_Pae_SMP5, or a two-phage cocktail hydrogel cellular subepidermal granulation tissues with abundant records of fibroblastic activity and mixed inflammatory cell infiltrates and showed 17.2%, 25.8%, and 22.2% records of dermal mature collagen fibers, respectively. In conclusion, phage vB_Pae_SMP1 or vB_Pae_SMP5, or the two-phage cocktails formulated as hydrogels, were able to manage the infection of CRPA in burn wounds, and promoted healing at the injury site, as evidenced by the histopathological examination, as well as a decrease in animal mortality rate. Therefore, these phage formulae can be considered promising for clinical investigation in humans for the management of CRPA-associated skin infections.


Assuntos
Bacteriófagos , Fagos de Pseudomonas , Humanos , Animais , Ratos , Bacteriófagos/genética , Pseudomonas aeruginosa , Genômica , Genoma Viral , Carbapenêmicos/farmacologia , Fagos de Pseudomonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...